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Abstract Introduction: We sought biological pathways that explained discordance between Alzheimer’s
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disease (AD) pathology and symptoms.
Methods: In 306 Alzheimer’s Disease Neuroimaging Initiative (ADNI)-1 participants across the AD
clinical spectrum, we investigated association between cognitive outcomes and 23 cerebrospinal fluid
(CSF) analytes associated with abnormalities in the AD biomarkers amyloid b1-42 and total-tau. In a
200-person “training” set, Least Absolute Shrinkage and Selection Operator regression estimated model
weights for the 23 proteins, and for the AD biomarkers themselves, as predictors of ADAS-Cog11 scores.
In the remaining 106 participants (“validation” set), fully adjusted regressionmodels then tested the Least
Absolute Shrinkage and Selection Operator–derived models and a related protein marker summary score
as predictors of ADAS-Cog11, ADNI diagnostic category, and longitudinal cognitive trajectory.
Results: AD biomarkers alone explained 26% of the variance in validation set cognitive scores.
Surprisingly, the 23 AD-related proteins explained 31% of this variance. The biomarkers and protein
markers appeared independent in this respect, jointly explaining 42% of test score variance. The
composite protein marker score also predicted ADNI diagnosis and subsequent cognitive trajectory.
Cognitive outcome prediction redounded principally to ten markers related to lipid or vascular
functions or to microglial activation or chemotaxis. In each analysis, apoE protein and four markers
in the latter immune-activation group portended better outcomes.
Discussion: CSF markers of vascular, lipid-metabolic and immune-related functions may explain
much of the disjunction between AD biomarker abnormality and symptom severity. In particular,
our results suggest the hypothesis that innate immune activation improves cognitive outcomes in
persons with AD pathology. This hypothesis should be tested by further study of cognitive outcomes
related to CSF markers of innate immune activation.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Forty years after the “rediscovery” of Alzheimer’s
disease (AD) as the chief cause of old-age dementia [1],
we still lack interventions that substantially reduce its
morbidity. The resulting AD pandemic creates an imperative
to search anew for mechanisms that provoke AD symptoms
[2]. Identification of such mechanisms can suggest the
development of rational treatments.

Despite enormous information gained, the prevailing
hypotheses regarding AD pathogenesis have failed to deliver
strategies for mitigation of symptoms. Disappointment is
perhaps greatest with respect to the amyloid cascade
hypothesis [3]. Substantial evidence supports this
conception that oligomerization or aggregation of neuro-
toxic amyloid b (Ab) peptides provokes neurodegenerative
changes including intraneuronal deposits of hyper-
phosphorylated and misfolded tau protein, leading in turn
to synaptic dysfunction [4]. Hopes here were bolstered, but
as yet to no avail, by demonstration that much of this change
occurs before the onset of cognitive symptoms [5,6], the
ideal time for preventive interventions. Especially
frustrating has been the finding that anti-amyloid therapies
have succeeded in “target engagement,” removing or
reducing amyloid burden, with little or no symptomatic
benefit and even a potential for harm [7–9].

Also popular has been the idea that neurodegeneration in
AD results from the deleterious consequences of an innate
immune response that accompanies its pathogenesis [10].
This theory was buttressed by epidemiologic findings
of reduced AD occurrence in persons with chronic
inflammatory disease [11] and in long-term users of
nonsteroidal anti-inflammatory drugs [12]. Later observa-
tional studies in older patients failed to confirm any
advantage of nonsteroidal anti-inflammatory drug use,
however [13], and large-scale treatment and prevention trials
showed that anti-inflammatory drugs brought no benefit [14]
or even possible harm [15–17].

More recently, the genetics of later-onset AD have pointed
again to immune as well as lipid metabolic pathways [18],
while additional observations have linked AD risk to vascular
health [19,20]. For instance, central nervous system (CNS)
vascular and blood-brain barrier dysfunction may lead to
abnormal accumulation of the AD pathological hallmarks
[21]. Altered innate immune functions appear to provoke
related changes [22–24], and lipid dysmetabolism is implied
by the strong association of AD risk with polymorphisms at
apolipoprotein-encoding genes such as APOE (especially)
and CLU (Apo J) [25,26]. Recent data-driven analyses further
suggest that changes in some of these pathways occur before
accumulation of Ab abnormality [27,28]. AD therefore
appears to represent a failure of several interrelated
biological systems. To date, however, investigation of these
intertwined pathways has not suggested a route to prevention.

Often overlooked in the search for causes of AD
morbidity has been a poorly understood divergence between
biological pathogenesis and symptom expression. This
“disconnect” is best exemplified by observations that some
20%–30% of older persons whose autopsy results reveal
extensive AD pathology were cognitively unimpaired before
death [29–31]. Such findings have since been corroborated
in vivo through positron emission tomography (PET)
imaging [32–34]. These and related observations of
symptomatic “resilience” [35] suggest that one might
suppress the expression of AD dementia and related
cognitive symptoms despite the presence of the disease’s
pathological hallmarks. We suggest that this phenomenon
of resilience presents a potential pathway to symptom
prevention. Some psychosocial and behavioral antecedents
of symptomatic resilience are known [36,37], and other
recent work has identified biological factors that may
exacerbate or reduce cognitive decline [38–40].
Nonetheless, further elucidation of biological determinants
of symptomatic resilience may offer more practical
potential pathways for pharmacologic intervention.

To undertake a fresh examination of the last topic, we
conducted a series of unbiased searches for biological
correlates of symptomatic resilience among 306 participants
in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI-1) who had donated cerebrospinal fluid (CSF).
This work relied on an expectation that relevant biological
pathways should typically be associated with CSF protein
markers of their activity. In previous studies among a subset
of this sample, we had identified 23 CSF proteins associated
with the AD pathological process [41]. Here, we investigated
the latter markers’ possible role in symptomatic resilience
by assessing their ability to predict cognitive performance
and trajectory in relation to a given level of apparent AD
pathology.
2. Methods

2.1. Participants

We downloaded data from http://adni.loni.usc.edu. ADNI
was launched in 2003 as a public-private partnership led by
the principal investigator Michael W. Weiner. Its primary
goal has been to test whether serial magnetic resonance
imaging, PET, and various clinical, biological, and
neuropsychological markers can be combined to measure
progression of mild cognitive impairment (MCI) and early
AD dementia. We studied 306 ADNI-1 participants across
the AD clinical spectrum having available CSF data. These
included 90 healthy controls (HC), 147 persons with MCI,
and 69 with AD dementia. ADNI assessed the cognitive
status of these persons annually using the 11- and 13-point
versions of the Alzheimer’s Disease Assessment Scale
(ADAS-Cog11 and ADAS-Cog13) [42] as well as the
Mini-Mental State Examination [43]. Each ADNI site had
received approval from its institutional ethical standards
committee on human experimentation. Written informed
consent was obtained from all research participants and
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from collateral informants when applicable. All research
complied with ethical principles of the Declaration of
Helsinki.

2.2. CSF measurements and classification

The ADNI investigators measured CSF Ab1-42 and total
(t)-tau concentrations with research-use-only INNOBIA
AlzBio3 immunoassay reagents (Fujirebio, Ghent, Belgium)
on an xMap Luminex platform (http://adni.loni.usc.edu/
methods/biomarker-analysis/). We assigned the 306 ADNI
participants to groups according to their CSF Ab1-42 and
t-tau levels, considering them to be “amyloid-positive” if
their Ab1-42 concentrations were below the ADNI-
recommended threshold value of 192 pg/mL. Similarly,
“tau-positive” individuals had t-tau values exceeding 93
pg/mL [44]. The ADNI also attempted to assay CSF levels
for 159 other proteins using a multiplex X-Map kit from
Rules Based Medicine (Myriad RBM, Austin, TX).
Rigorous quality control (QC) standards led to exclusion
of markers with unacceptable variability in assay results or
.10% missing data, yielding only 83 acceptable measures.
Results for these were normalized when indicated using
Box-Cox or similar transformation techniques (http://adni.
loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-Bio
markers-Consortium-Data-Primer-FINAL1.pdf). Our previ-
ous studies interrogated these proteins’ relation to AD
pathology after scoring participants as 0 for no biomarker
evidence of such pathology (A2/T2), 1 if positive for
amyloid only (A1/T2), or 2 for presence of both amyloid
and tau abnormalities (A1/T1) [45]. We used Bayes factor
analysis to reduce the 83 proteins to 38, showing positive
likelihood of association (direct or inverse) with AD
biomarker pathology score. Linear regression modeling
(with false discovery rate correction, q � 0.05) then
identified the aforementioned 23 “AD-related” proteins
(Table 1) that showed a statistically significant association
with AD pathology.

2.3. APOE genotyping

ADNI APOE genotypes had been determined using DNA
extracted by Cogenics (Beckman-Coulter, Pasadena,
California) [46].

2.4. Analytic methods

2.4.1. Training and validation sets
For purposes of internal validation, we randomly

assigned 200 of the noted ADNI participants to a “training”
set and the remaining 106 persons to a separate “validation”
set. We compared characteristics of the training and
validation sets using the Mann-Whitney U test for
continuous non-normally distributed variables or the c2

test for discrete data when appropriate. Of note, our earlier
search for markers associated with AD pathology relied on
74 (70%) of validation set participants (as well as 163, or
63%, of training set participants) who were either HCs or
had MCI. To verify lack of circularity in our approach, we
therefore identified an alternate, more restricted, set of
“AD-related” proteins as before [41], only now omitting
consideration of persons in the validation set. The resulting
21 proteins included 19 of the 23 described previously.
Substitution of the 21 proteins in the modeling analyses
described in the following section produced essentially no
change in results.

2.4.2. LASSO regression modeling of baseline cognitive
performance

To identify and evaluate markers associated with
cognitive performance, we used Least Absolute Shrinkage
and Selection Operator (LASSO) regression [47]. This
multivariable technique identifies specific variables (items)
that predict a given outcome in the context of all others,
and assigns optimal item weights for this prediction.
Working exclusively in the training set, we developed three
LASSO models for prediction of ADNI baseline cognitive
impairment score (ADAS-Cog11). Model 1 used only the
“classic” AD biomarkers Ab1-42 and total (t-)tau; Model 2
used the 23 AD-related protein markers as described; and
Model 3 used the combination of markers in Models 1 and
2. We used a 10-fold cross-validation procedure to optimize
penalization and model weight parameters for each model
after dividing the training data randomly into ten equal
cross-validation sets. On each of ten iterations, we omitted
one such set and optimized model weights and penalization
parameters for the remaining nine. Averaging marker
weights across the ten cross-validation folds then yielded
optimal consensus models. We estimated the predictive
capacity of these consensus models in the training set by
examining predicted versus observed ADAS-Cog scores.
Finally, we tested the generalizability of the models by
applying them to the never-before-seen validation set. Using
a bootstrapping procedure (5000 iterations), we estimated
95% confidence intervals for the proportion of variance
(R2) explained by each model, thereby enabling
comparisons of their performance. As a control measure,
we tested the specificity of the findings from the 23
AD-related markers (model 2) by comparing their
performance with similar “models” obtained using 100
randomly chosen protein marker sets of 23 species from
the 60 ADNI-1 CSF proteins that were not “AD-related.”

2.4.3. Applying model weights to predict clinical diagnostic
category

We then tested whether the marker weights obtained from
Model 2 could predict differential expression of symptoms
and functional disability, as reflected by ADNI diagnostic
category. To do this, we calculated a weighted summary
score of marker levels for each participant by multiplying
his/her standardized (z-scored) marker levels times the
inverse of the corresponding marker weights from Model 2
(inverse weighting so that higher score predicted improved
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Table 1

List of the 23 “AD-related” markers in ADNI CSF

Markers (with abbreviations)

AXL receptor tyrosine kinase (AXL)

CD40 antigen (CD40a)

Interleukin-3 (IL-3)

Macrophage colony stimulating factor-1 (MCSF-1)

Heparin-binding EGF-like growth factor (HB-EGFL-GF)

Hepatocyte growth factor (HGF)

Transforming growth factor a (TGF-a)

Vascular endothelial growth factor (VEGF)

Heart fatty acid–binding protein (hFABP)

Lectin like oxidized LDL-receptor-1 (LOX-1)

Angiotensin-converting enzyme (ACE)

Tissue factor (TF)

Chromogranin-A (Cg-A)

Cystatin-C

Fibroblast growth factor-4 (FGF-4)

Matrix metalloproteinase-3 (MMP3)

Osteopontin

Tissue inhibitor of metalloproteinases-1 (TIMP-1)

Tumor necrosis factor receptor-2 (TNFR-2)

Vascular cell adhesion molecule-1 (VCAM-1)

Apolipoprotein E (apoE)

Clusterin/apolipoprotein-J (apoJ))

Trefoil factor-3 (TFF-3)
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clinical outcomes rather than increased ADAS score). We
tested this marker summary score as a predictor of
contrasting ADNI diagnostic categories (HC vs. MCI,
MCI vs. AD dementia, or HC vs. AD dementia) using
multinomial logistic regression. Importantly, we adjusted
the regression model not only for age, sex, education, and
APOE ε4 carrier status, but also for CSF Ab1-42 and t-tau
levels. In effect, this adjustment therefore assessed the
association of marker summary scores with the various
diagnostic categories independent of these covariates. The
logistic approach allowed calculation of odds ratios (ORs)
for each standardized unit of the weighted protein marker
score as a predictor of the three diagnostic contrasts. Upon
observing the results (given in the Results section), we
evaluated further whether the association of markers with
diagnostic assignment was a trivial consequence of cognitive
test score variation. To do this, we reran the logistic models,
now including ADAS-Cog11 score as an additional
covariate.

2.4.4. Using weighted marker scores to predict 4-year
cognitive trajectory

Finally, we investigated whether the aforementioned
inverse-weighted protein marker summary score from
Model 2 predicted subsequent 4-year cognitive trajectory.
For this analysis, we used a linear mixed effects
analysis to assess the interaction of time with (baseline)
weighted marker score as a predictor of ADAS-Cog change.
This analysis was adjusted not only for participant age,
sex, APOE ε4 carrier status, years of education, and
CSF Ab1-42 and t-tau, but also for diagnosis and baseline
cognitive performance.

All analyses used a two-sided a 5 .05 and relied on
MATLAB (MathWorks Inc., Natick, Massachusetts).

2.5. Data availability

All data used for this work are available at the ADNI
website (http://adni.loni.usc.edu/) subject to a data usage
agreement with the ADNI investigators. Full details can be
found at http://adni.loni.usc.edu/data-samples/access-data/.
3. Results

3.1. Demographic characteristics

Demographic characteristics of participants are summa-
rized in Table 2. The training and validation sets were
comparable in age, sex ratio, years of education, MMSE,
as well as CSF total (t)-tau and Ab1-42. However, there
was some disparity in distribution of clinical diagnostic
categories, the training set having disproportionate numbers
of HCs and fewer AD participants (c2 5 9.41, P 5 .01).
Presumably owing to its larger proportion of subjects with
dementia, the validation set also had somewhat higher
(worse) ADAS-Cog11 scores than the training set
(P 5 .02). Of note, 34 (38%) HC participants had CSF
evidence of Ab pathology, making them especially suitable
candidates for the investigation of symptomatic resilience.

3.2. AD biomarkers’ and CSF proteins’ relation to
cognitive scores

Fig. 1 shows the results of the LASSO modeling
approach. Model 1 (AD biomarkers only) demonstrated
good predictive accuracy in the training set and
generalizability in the never-before-seen validation set,
explaining 26% of ADAS score variance in the latter
(P , 1027). As expected, t-tau had a positive weight
(increasing tau levels predicting increasing ADAS-Cog
score, i.e., greater cognitive deficit), while Ab1-42 had a
negative weight. Model 2, relying exclusively on the 23
AD-related protein markers, explained 31% of variance in
validation set cognitive performance (P , 1029), but its
apparent improvement over model 1 was uncertain
(P 5 .19; Fig. 2). Here, the largest positive weights
(strongest association with ADAS score, suggesting
diminished cognitive abilities) were observed for heart fatty
acid–binding protein, clusterin (apo-J), and hepatocyte
growth factor (HGF). The strongest negative weights (lower
scores associated with ADAS score or, equivalently, higher
scores associated with improved cognition) were apparent
for chromogranin-A (Cg-A), apolipoprotein E (apoE),
vascular endothelial growth factor (VEGF), and CD-40
antigen (CD-40a). The combination of CSF protein markers
and AD biomarkers (model 3) best predicted ADAS-Cog11
scores, explaining 41% of their variance (P , 10213), a
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Table 2

ADNI demographics overall and by assignment to training or validation sets

All participants Training Validation

PHC MCI AD HC MCI AD HC MCI AD

Sample 90 147 69 69 94 37 21 53 32 0.01

Age, mean (s.d.) 75.69 (5.46) 74.99 (7.34) 75.16 (7.60) 76.21 (4.82) 74.90 (7.68) 74.35 (7.99) 73.95 (7.06) 75.15 (6.76) 76.09 (7.13) 0.95

Sex, male:female 46:44 100:47 39:30 34:35 63:31 20:17 12:9 37:16 19:13 0.34

APOE-ε4, Carriers:Non-carriers 68:22 69:78 20:49 54:15 45:49 11:26 14:7 24:29 9:23 0.08

Education years,

mean (s.d.)

15.64 (2.94) 15.95 (2.94) 15.16 (2.98) 15.77 (2.94) 15.44 (2.91) 15.03 (3.05) 15.24 (3.00) 16.85 (2.79) 15.31 (2.95) 0.10

CSF Ab1-42
(pg/mL),

mean (s.d.)

207.9 (53.2) 160.5 (50.0) 141.3 (35.6) 205.3 (54.4) 154.3 (44.1) 135.0 (29.3) 216.4 (49.1) 171.5 (57.9) 148.6 (41.0) 0.43

CSF t-tau (pg/mL),

mean (s.d.)

69.8 (27.7) 105.9 (55.2) 122.9 (60.0) 70.9 (29.1) 110.9 (60.1) 133.2 (67.8) 66.2 (22.9) 97.0 (44.5) 110.9 (47.8) 0.35

Ab status,

negative:positive

56:34 31:116 4:65 42:27 15:79 1:36 14:7 16:37 3:29 0.70

Baseline ADAS-Cog11 6.14 (2.85) 11.90 (4.50) 18.43 (6.78) 6.22 (2.82) 11.91 (4.66) 17.85 (7.92) 5.90 (3.02) 11.84 (4.24) 19.10 (5.21) 0.02

NOTE. P values are given for overall difference between training and validation sets.

Abbreviations: HC, Healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s dementia; s.d., standard deviation; pg/mL, picograms per milliliter;

APOE-ε4 C:NC, number of APOE ε4 carriers and noncarriers; CSF, cerebrospinal fluid.
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significant improvement over both model 1 and model 2
(P w .01 and .05; Fig. 2). Importantly, excepting HGF, all
the key protein markers in model 2 retained similar
relevance after addition of the AD biomarkers (model 3),
suggesting substantial independence from the latter.

Control “models” were derived from 100 samples of 23
proteins, each drawn randomly from the residue of 60
ADNI proteins unrelated to AD pathology. These failed to
converge on an optimal solution in 31% of instances. In
the remaining analyses, the randomly chosen protein species
typically predicted only a trivial amount of cognitive
performance variance in the training set (median
R2 5 0.02). Even the best-performing of these control
models (training set R2 up to 0.16) failed to generalize to
the validation set (median R2 5 0.01; range 5 0–0.10),
indicating that these “control protein” models may have
reached an “overfitted” state in the training set.
3.3. LASSO protein model weights predict diagnostic
category

Results from the adjusted multinomial logistic model for
prediction of diagnostic contrasts (HC vs. MCI, HC vs. AD
and MCI vs. AD) are presented in the forest plot of Fig. 3.
The figure indicates that a 1 standard-unit increase in the
inverse-weighted marker summary score from Model 2
was associated in the validation set with a w3.5-fold
decrease in probability of MCI versus HC (OR 5 0.29;
95% confidence interval [CI] 5 0.12–0.68, P , .005).
Similarly, each unit increase in marker score implied a
4.1-fold decrease in the probability of AD dementia versus
MCI (OR 5 0.25; 95% CI 5 0.11–0.55, P , .001) and a
14.2-fold decrease in the probability of AD dementia versus
HC (OR 5 0.07; 95% CI 5 0.02–0.22, P , .001). These
results were only partly mitigated by inclusion of cognitive
scores in the model (all P remaining, 0.01), suggesting that
the markers predicted functional capacity (important to the
described diagnoses) beyond pure cognitive deficit.
3.4. Weighted marker score predicts rate of 4-year
cognitive decline

Here, we tested the association between the weighted
protein marker score from Model 2 and subsequent
four-year cognitive trajectory, verifying that such
association would survive adjustment not only for
biomarkers and AD risk factors but also for baseline
cognitive performance and clinical diagnostic category.
The fully adjusted analysis indicated that each standard
unit increase in inverse-weighted marker score was
associated with a decrease in slope of ADAS-Cog11
performance of b 5 0.87 points/year, (standard
error 5 0.39; P 5 .04; Fig. 4). The limited sample size of
the validation set precluded evaluation of weighted marker
score prediction of 4-year cognitive trajectory among
individual diagnostic categories.
4. Discussion

We examined CSFAD-related protein markers alongside
biomarkers of AD for their relevance to cognitive symptom
expression. To do this, we used a 200-person training set of
participants from ADNI-1, applying LASSO regression
with a ten-fold cross-validation procedure to assign predictor
variable weights. The three resulting models were then tested
in a validation set of the remaining 106 ADNI participants.
We found that the AD biomarker and CSF protein models
appeared to be additive, with the contributions of their
constituent variables being mostly independent. Lack of
collinearity between the two sets of markers was further
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Fig. 1. LASSO regression modeling for prediction of ADASCog-11 performance. Three models were trained to predict baseline ADASCog-11 performance.

Model 1 (top row) considered typical AD biomarkers (CSF Ab1-42 and t-tau) only. This model’s predictions explained only a fraction of the variance in

training set ADASCog-11 scores (R2 5 0.15) but generalized well to the validation set (R2 5 0.26). Model 2 (middle row) considered the 23 CSF

AD-related proteins of interest here. This model relied strongly on hFABP, apoJ, HGF, Cg-A, apoE, VEFG, and CD-40a (color-coded with relevant func-

tions annotated in the figure), which apparently accounted for .90% of its predictive abilities. It provided robust predictions in both the training

(R2 5 0.30) and validation sets (R2 5 0.31). Model 3 (bottom row) used the combination of AD biomarkers and the 23 CSF proteins. It provided

good to excellent predictions in the training (R2 5 0.36) and validation sets (R2 5 0.42). Dots in the left column represent marker weights in each model.

The middle column shows correlations in the training set between observed ADASCog-11 scores and those predicted by each model, with color-coded dots

indicating each participant’s ADNI diagnosis. The right hand column shows equivalent correlations for the validation set. Abbreviations: AD, Alzheimer’s

disease; MCI, mild cognitive impairment; HC, healthy control; CSF, cerebrospinal fluid; hFABP, heart fatty acid–binding protein; HGF, hepatocyte growth

factor; VCAM, vascular cell adhesion molecule-1; TGF-a, transforming growth factor a; ACE, angiotensin-converting enzyme; IL, interleukin; MCSF-1,

macrophage colony stimulating factor-1; VEGF, vascular endothelial growth factor; ADAS, Alzheimer’s Disease Assessment Scale; apoE, apolipoprotein

E protein.
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suggested by the relative invariance of protein marker
weights in the conjoint Model 3 versus that derived from
the proteins only (Model 2).

In particular, the protein marker Model 2 predicted
disjunction between degree of AD pathology and symptom
expression. Not only did it predict (cross-sectional)
cognitive performance in the never-before-seen validation
set, a summary score derived from its constituent marker
weights also provided strong prediction of ADNI clinical
diagnostic category. Importantly, the latter prediction
survived statistical adjustment for CSF levels of Ab and
tau as well as AD risk factors and, notably, cognitive score.
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Otherwise stated, the protein markers alone predicted
variation in diagnosis for a given level of AD pathology
and cognitive score. In fully adjusted models that also
included a term for baseline cognitive score and diagnosis,
the inverse-weighted protein marker summary score also
predicted rate of cognitive change over the succeeding
four years. Together, these observations suggest that
AD-related protein markers are strongly associated with
baseline cognition, with cognitive diagnosis, and with
cognitive decline associated with a given level of AD
biomarker “pathology.” Limitation of this effect to the 23
AD-associated markers was suggested by the absence of
any similar prediction of cognitive outcomes in models
constructed from multiple sets of 23 “control” markers
from the remaining 60 ADNI-1 protein species.
4.1. Function of the predictive CSF proteins

While these findings await independent confirmation, we
suggest it is reasonable here to consider mechanistic
explanations that might advance our understanding of
symptomatic resilience to AD pathology. Notably, most of
the predictive capability of the 23 AD-related proteins
resided in ten marker species that were responsible for
.95% of the observed effect (data not shown). In models
that included (were adjusted for) Ab and tau levels, these
were fatty acid–binding protein (FABP), apoJ, apoE,
angiotensin-converting enzyme, Cg-A, CD-40a, VEGF,
HGF, Transforming Growth Factor a, and macrophage
colony stimulating factor-1. Among these, only HGF
appeared to be collinear with the AD biomarkers, becoming
inapparent as a predictor of cognitive outcomes when
analyses included the biomarkers. A gene ontology analysis
suggested that the nine remaining proteins are involved in a
variety of overlapping mechanisms involved in lipid
metabolic, immune, and vascular pathways.

The functions of several of these proteins recall findings
from the genetics of late-onset AD. For example, apoE
protein (determined by APOE genotype, the strongest
genetic risk factor for late-onset AD after age) was among
the nine key protein markers. ApoJ (clusterin), conditioned
by the CLU risk polymorphism [26], was another key
“predictor.” Both apoE and apoJ appear to be involved in a
dynamic equilibrium between Ab plaques and soluble Ab
species, possibly owing to their role in cholesterol transport
[48] (for apoE) or in breakdown of protein aggregates (for
apoJ) [49]. ApoE also has an important role in
astrocyte-mediated clearance of Ab [50]. Recent data
suggest it may also be important in microglial activation in
neurodegenerative diseases via coupling with the triggering
receptor expressed on myeloid cells 2 (TREM-2) pathway
[51], the product of another important AD risk gene.
FABP is also implicated in the transport of lipids and may
be elevated in the CSF of patients with AD and individuals
with progressive MCI [52].

FABP-mediated lipid metabolism may also be linked
to inflammatory processes [53], in keeping with a broader
notion that CNS lipid metabolism is important to innate
immune activation. It is probably not surprising, there-
fore, that the aforementioned three proteins conjoin
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with four other evidently immune-related markers among
the “short list” of nine proteins that appear to modify
clinical outcomes. Specifically, CD-40a is a key mediator
of immune activation believed to hold an early role in the
pathogenesis of AD [54,55]. It activates antigen
presenting T cells while it regulates the deposition of
Ab. Cg-A is similarly associated with CNS microglial
activation [56,57]. Although important to vascular
homeostasis [58], VEGF has been shown also to
induce microglial chemotaxis and proliferation [59,60]
and to be an important mediator of the immune
response to tumors [61]. Macrophage colony stimulating
factor-1 causes proliferation and differentiation of macro-
phages, regulates number of microglial cells and their
state of differentiation, and promotes neuronal survival
[62,63].

Notably, each of the aforementioned four “immune-
related” markers was inversely related to ADAS-Cog score,
that is, higher levels predicted improved cognition. Because
there has been a widespread assumption that “inflammatory”
processes exert a deleterious influence on AD symptom
development (see Section 4.3 below), we had expected
higher levels of these four markers to be associated with
increasing symptom severity, but we found the opposite to
be true. This observation appears to converge with other
evidence that some enhanced immune responses can be
beneficial for individuals who are older [64] or who have
established AD dementia [65]. Therefore, the described
functions of the predictive markers may suggest that
immune activation occurs as a response to insults such as
AD pathology, presumably involving activation and
recruitment of immune cells. Such activation could, in
some instances, enhance clearance of toxic proteins and
promotion of cell survival, thereby resulting in improved
cognitive outcomes for a given level of AD pathology.
4.2. Strengths and limitations

The principal strength of this work appears to be its
reliance on an unbiased data-driven, hypothesis-free
approach to identify markers associated with both AD
pathology and symptom expression. Our analytical plan
was based on rigorous cross-validation and internal
validation procedures to build models from important
predictors that generalized well to unseen data.

However, several limitations should also be noted. Most
importantly, these analyses relied on data from a protein
screen of ADNI CSF that was assayed using multiplex
technology. The ADNI investigators had initially attempted
to assay 159 proteins, only 83 of which passed quality
control criteria. Such results occur typically because of
insufficient assay sensitivity for many analytes, here
including several key markers of immune activation.
Furthermore, despite their apparent links to immune
activation, the predictive proteins act at the interface of
several processes thought to be key in the AD cascade. It
remains possible, therefore, that other pathways may act
independently or in concert with immune activation to
modulate, and possibly improve, cognitive function. A
further limitation of our analyses was their reliance
principally on cross-sectional data, limiting our ability to
infer ordinality or causality of the observed associations.
Finally, we relied on CSF Ab and tau as indicators of the
extent of AD pathology (an important component in the
phenomenon of resilience). Unfortunately, we could not
include PET measures of Ab or tau pathology because few
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participants had these measures available (96 for Ab, 19
for tau), many with an excessive interval between
baseline and PET imaging (median lag from LP to scan:
60 months for Ab, 132 months for tau). Similarly, cortical
thickness data from a region of interest, as described by
Jack et al. [66], or hippocampal volume as measures of
AD progression also resulted in significant missing data
(w20%), although these yielded similar results in reduced
samples (data not shown). Before their significance can be
fully evaluated, therefore, our results require corroboration
in other data sets, preferably using assay methods with
improved sensitivity as well as other indicators of AD
pathology.

Nevertheless, the available data suggest an important
pathway for modification, and possible amelioration, of
symptomatic expression of AD and therefore a hypothesis
for future investigation.
4.3. A hypothesis and experimental approaches to its
assessment
Hypothesis: Immune activation modulates the cogni-
tive and functional deficits that otherwise accompany
the accrual of “classical” AD pathology.
It has long been understood that immune activation
accompanies evidence of the AD process [67]. Early
epidemiological studies showed an inverse association
between anti-inflammatory drug use and AD risk
[12,68]. These findings led to widespread speculation
that AD pathology induced immune activation, which in
turn generated a neurotoxic environment, neuronal death,
and eventually dementia [69]. This formulation recalls
other instances in which uncontrolled CNS immune re-
sponses lead to nervous system damage and cognitive
impairment (e.g., in Lyme disease) [70]. In neurodegener-
ative disease models, maladaptive immune responses
appear to provoke neuronal death through the generation
of reactive astrocytes [71]. The present results are at
odds with these ideas, however, suggesting instead that
some components of innate immune activation may be
associated with improved cognitive outcomes in AD.
This improvement might result from increased clearance
of Ab species [72], a process in which astrocytes appear
also to play an important role [50].

Importantly, most CNS immune responses are provided
by microglia and astrocytes. These cells have multiple
functions and roles at the interplay of pathways thought to
be involved in AD pathogenesis. For instance, astrocytes
are the main producers of apoE protein in the CNS and are
clearly involved in blood brain barrier (BBB) function and
in the clearance of Ab and neurotoxic neurotransmitters
[73]. In addition, both astrocytes and microglia help
maintain CNS homeostasis and provide trophic support to
neurons. While malfunction of these important cells may
result from accumulating AD pathology, they may also be
the cause of such pathology by provoking either
accumulation of pathological proteins, BBB dysfunction,
or deterioration and loss of trophic support. Any of these
may promote neurodegeneration. In this context, it appears
noteworthy that risk alleles at the polymorphic TREM-2
and CD-33 genetic loci are associated with reduced
microglial clearance of Ab plaques [22,74,75]. These
loss-of-function mutations result in reduced microglial
activation and clustering around plaques [76].

An important limitation of the latter observations,
however, is that they derive mainly from animal models.
We know of no present evidence of similar mechanisms in
human studies, notably because these efforts have
encountered difficulties in reliable measurement of the
most important markers of immune activation in CSF
[77,78]. Thus, to date, human studies of association
between disease and fluid markers of inflammation have
yielded contrasting results [79].

While we and others have observed reduced CSF
immune marker levels in individuals with evidence of
“pure” amyloid pathology [41,80], (thereby suggesting
that a maladaptive immune response might result in brain
accrual of Ab) the noted limitations in measurement
sensitivity restricted our analysis to only 23 markers.
Measurement of many other protein markers, particularly
other markers of immune activity, could render a more
complete analysis of biological networks involved. Future
efforts to test the proposed hypothesis and identify its
related pathways will therefore require newer immune
marker assay methods having improved sensitivity.
Although costly, these techniques should allow
identification and measurement of many more relevant
immune marker proteins.

As here, an expanded set of envisioned assay results
would benefit from the use of unbiased, data-driven feature
selection approaches. Importantly, these techniques identify
and assess the relevance of individual markers in the context
of all others. An important objective of the proposed work
should be to identify which among many available markers
of immune activity have the greatest apparent “effect” on
cognitive outcomes—a topic not readily studied in animal
models of preclinical AD. These markers, or families of
them, can in turn suggest specific immune pathways relevant
to the phenomenon of resilience, thereby prompting
additional focused biological investigation using modern,
high-resolution techniques.

Finally, we would note that our current or proposed
analyses relate to cross-sectional data and therefore cannot
assess important questions about the ordinality and potential
causality of discovered associations. To answer these last
questions, longitudinal data will be needed. Such data
could in turn be analyzed using recently introduced
machine-learning algorithms that can provide a virtual
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“motion picture” of sequential events in the biological
pathways underlying resilience. Such work may also
identify immune pathways involved in accumulation or
clearance of pathological proteins and symptomatic
resilience, thereby pointing more directly to timing at which
pathways could be either upregulated or downregulated to
achieve symptom mitigation. Together with other biological
or mechanistic experimentation mentioned previously,
results from such studies may suggest promising new targets
for novel prevention strategies.
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RESEARCH IN CONTEXT

1. Systematic review: To date, most studies on
symptomatic resilience to Alzheimer’s disease
(AD) pathology have investigated lifestyle and
psychosocial phenomena. Little prior work has
investigated biological pathways that may deter
symptom expression.

2. Interpretation: Data-driven analyses suggest that
vascular, lipid metabolic, and, especially, immune
pathways explain much of the disjunction between
classic AD biomarker abnormality and symptom
severity. In keeping with new observations reported
here, we propose a hypothesis that activation of
innate immune pathways, revealed by CSF markers,
can improve cognitive outcomes in persons
developing AD pathology.

3. Future directions: We propose a research framework
to test the foregoing hypothesis. This research should
include assessment of previously unmeasurable
immune markers through use of new high-
sensitivity bioassays. Longitudinal data on such
markers along with AD biomarkers and cognitive
measures can be analyzed using cutting-edge
unsupervized machine learning techniques. Such
analyses may suggest intervention strategies for
prevention of AD symptoms.
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